How did teeth evolve? – Peter S. Ungar

You may take them for granted, but your teeth are a marvel.
They break up all your food over the course of your life,
while being strong enough to withstand breakage themselves.
And they’re formed using only the raw materials
from the food they grind down in the first place.
What’s behind their impressive strength?
Teeth rely on an ingenious structure that makes them both hard and tough.
Hardness can be thought of as the ability to resist a crack from starting,
while toughness is what stops the crack from spreading
Very few materials have both properties.
For instance, glass is hard but not tough,
while leather is tough but not hard.
Teeth manage both by having two layers:
a hard external cap of enamel, made up almost entirely of a calcium phosphate,
and beneath it, a tougher layer of dentin,
partly formed from organic fibers that make it flexible.
This amazing structure is created by two types of cells:
ameloblasts that secrete enamel
and odontoblasts that secrete dentin.
As they form teeth, odontoblasts move inward,
while ameloblasts move out and slough off when they hit the surface.
For enamel, this process produces long, thin strands,
each about 60 nanometers in diameter.
That’s one one-thousandth the width of a human hair.
Those are bundled into rods, packed together,
tens of thousands per square millimeter,
to form the shield-like enamel layer.
Once this process is finished, your enamel can’t repair itself again
because all the cells that make it are lost,
so we’re lucky that enamel can’t be easily destroyed.
Odontoblasts use a more complex process, but unlike ameloblasts, they stick around,
continuing to secrete dentin throughout your life.
Despite the differences in teeth across the mammalian order,
the underlying process of tooth growth is the same whether it’s for lions,
kangaroos,
elephants,
or us.
What changes is how nature sculpts the shape of the tooth,
altering the folding and growth patterns
to suit the distinct diets of different species.
Cows have flat molar teeth with parallel ridges for grinding tough grasses.
Cats have sharp crested molars, like blades, for shearing meat and sinew.
Pigs have blunt, thick ones, useful for crushing hard roots and seeds.
The myriad molars of modern mammals
can be traced back to a common form called “tribosphenic,”
which first appeared during the dinosaur age.
In the 19th Century, paleontologist Edward Drinker Cope
developed the basic model for how this form evolved.
He hypothesized that it started with a cone-like tooth,
as we see in many fishes, amphibians, and reptiles.
Small cusps were then added, so the tooth had three in a row,
aligned front to back, and connected by crests.
Over time, the cusps were pushed out of line to make triangular crowns.
Adjacent teeth formed a continuous zigzag of crests for slicing and dicing.
A low shelf then formed at the back of each set of teeth,
which became a platform for crushing.
As Cope realized, the tribosphenic molar served as the jumping-off point
for the radiation of specialized forms to follow,
each shaped by evolutionary needs.
Straighten the crests and remove the shelf,
and you’ve got the conveniently bladed teeth of cats and dogs.
Remove the front cusp, raise the shelf, and you’ve got our human molars.
A few additional tweaks get you a horse or cow tooth.
Some details in Cope’s intuitive hypothesis proved wrong.
But in the fossil record,
there are examples of teeth that look just as he predicted
and we can trace the molars of all living mammals back to that primitive form.
Today, the ability to consume diverse forms of food
enables mammals to survive in habitats
ranging from mountain peaks and ocean depths
to rainforests and deserts.
So the success of our biological class is due in no small measure
to the remarkable strength and adaptability
of the humble mammalian molar.
0 views

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

Shopping Cart
/study-room/
http://pf.kakao.com/_xeAFxdG
https://talkya.co.kr/video-category/
https://www.readingn.com/?utm_source=naver_bspc&utm_medium=banner&utm_campaign=homepage_landing&n_media=27758&n_query=%EB%A6%AC%EB%94%A9%EC%95%A4&n_rank=1&n_ad_group=grp-a001-04-000000018019355&n_ad=nad-a001-04-000000266292918&n_keyword_id=nkw-a001-04-000003255044813&n_keyword=%EB%A6%AC%EB%94%A9%EC%95%A4&n_campaign_type=4&n_contract=tct-a001-04-000000000757110&n_ad_group_type=5&NaPm=ct%3Dlnju29co%7Cci%3D0z00002lPgfz397IXfl2%7Ctr%3Dbrnd%7Chk%3Dd0f544a47fd94ae9a321e278152b228f765250ec
https://blog.naver.com/brainfinder